The effects of Selective Decontamination

Marc Bonten, University Medical Center Utrecht, The Netherlands

What is SDD?

- Intravenous prophylaxis
- Oropharyngeal decontamination
- Gastric and intestinal decontamination
- Avoiding the use of anti-anaerobic antibiotics
- Surveillance cultures
- High level of hygiene

What is SOD?

- Oropharyngeal decontamination
- •

- •
- Surveillance cultures
- High level of hygiene

Antibiotics in SDD/SOD

- Cefotaxim 4 dd 1 gr. i.v. during first 4 days of treatment.
- Oropharyngeal application 4 dd 0.5 gr. paste containing 2% polymyxin E, 2% tobramycin and 2% amphotericin B.
- Intragastric application 4 dd 10 ml of suspension containing 100 mg polymyxin E, 80 mg tobramycin and 500 mg amphotericin B (suppositoria in case of stoma).
- To be started (asap) in intubated patients with an expected duration of intubation of at least 48 hours.

The NEW ENGLAND JOURNAL of MEDICINE

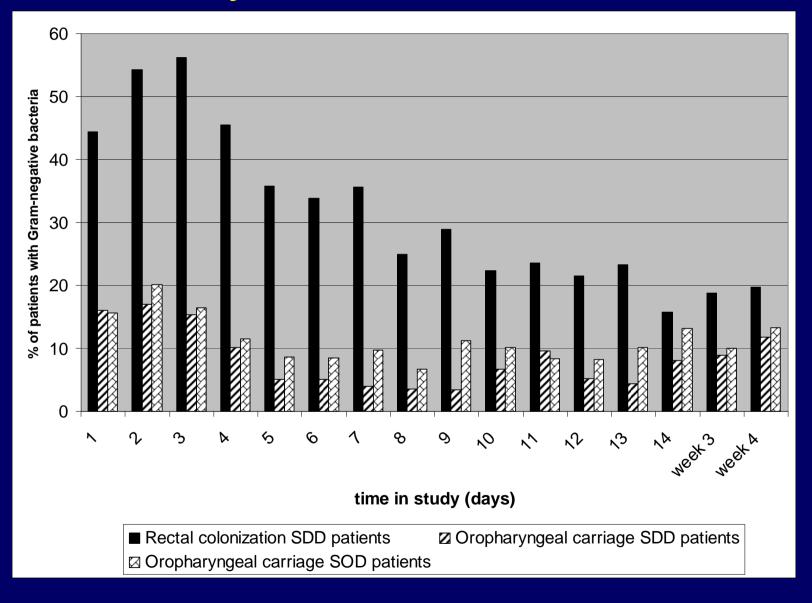
OR IGINAL ARTICLE

Decontamination of the Digestive Tract and Oropharynx in ICU Patients

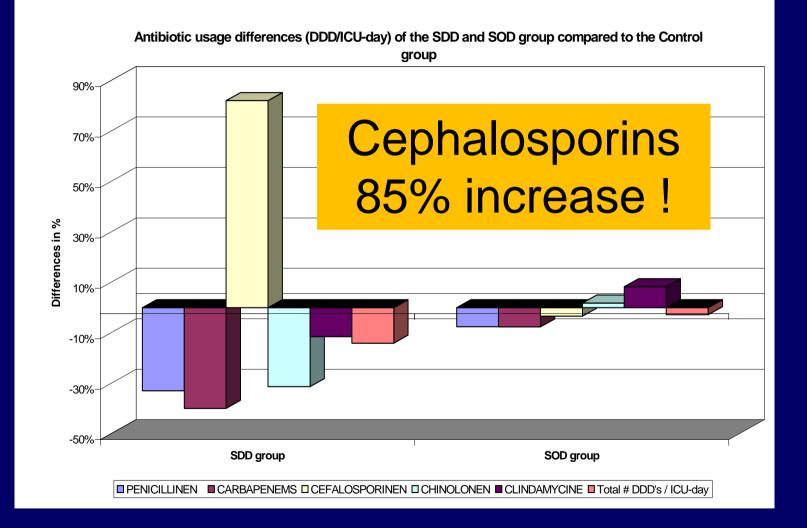
A.M.G.A. de Smet, M.D., J.A.J.W. Kluytmans, M.D., Ph.D., B.S. Cooper, Ph.D.,

Resistance ecology in Dutch ICUs:

MRSA <1% of *S. aureus* infections VRE <1% of enterococcal infections ESBL <5% of Enterobacteriaceae infections CRE 0% *C. diff* infections: sporadic

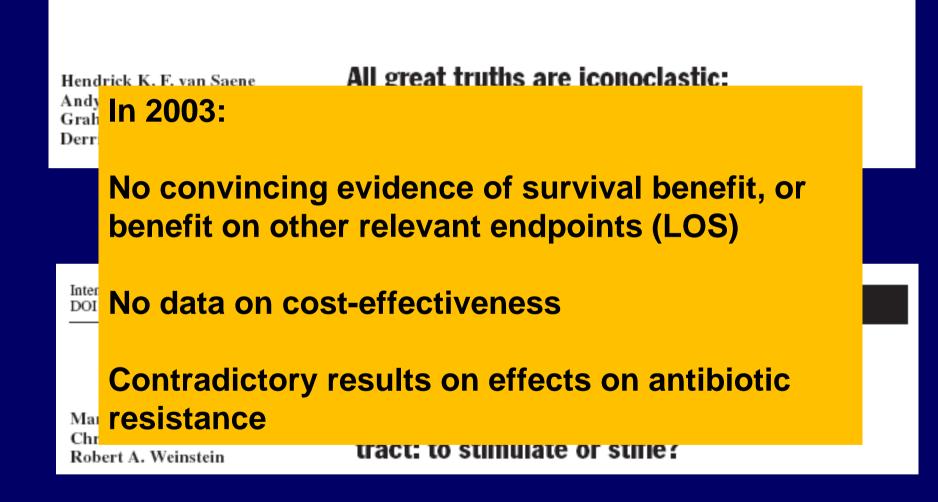

22

Werf, M.D., Ph.D., aers-Hofman, I.C.P., Kuijper, M.D., Ph.D., Bindels, M.D., Ph.D., ngh, M.D., Ph.D., .F. te Velde, M.D., osch, M.D., Ph.D., ge, M.D., Ph.D., .P. Arends, M.D., arinck, M.D., Ph.D., . Blok, M.Sc., n, M.D., Ph.D.,


and M.J.M. Bonten, M.D., Ph.D.

NENGLJMED 360;1 NEJM.ORG JANUARY 1, 2009

Efficacy of decontamination



Effects on antbiotic use in ICU

Intensive Care Med (2003) 29:677-690 DOI 10.1007/s00134-003-1722-2

REVIEW

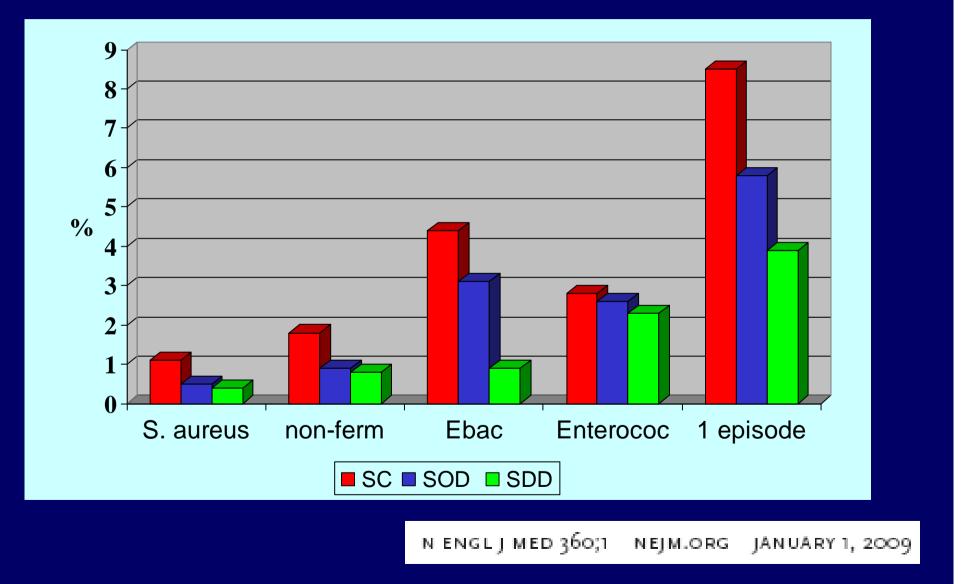
Would you use in an intervention if it

- Improves patient outcome (day-28 mortality)?
- Reduces ICU-acquired Gram-negative bacteremia?
- Reduces VAP?
- Reduces intravenous antibiotic use?
- Reduces ICU-acquired bacteremia caused by MDR?
- Reduces acquisition of MDR in the respiratory tract?
- Reduces carriage with ESBL-producing bacteria in the intestinal tract?
- Is cost-effective (costs <€20,000/life year gained)?
- Has it all?

Would you use in an intervention if it

- Improves patient outcome (day-28 mortality)?
- Reduces ICU-acquired Gram-negative bacteremia?
- Reduces VAP?
- Reduces intravenous antibiotic use?
- Reduces ICU-acquired bacteremia caused by MDR?
- Reduces acquisition of MDR in the respiratory tract?
- Reduces carriage with ESBL-producing bacteria in the intestinal tract?
- Is cost-effective (costs <€20,000/life year gained)?
- Has it all?

Clinical endpoints


	Adjusted outcomes						
	Standard Care SDD SOD N=1990 N=2045 N=1904						
	➢ Ředuce	ed mortality	D were associate at day 28 of 13%	6 and 11%			
M da	≻Absolu≻Numbe	te mortality er needed to	reductions of 3.5 o treat of 29 and 3	34 and 2.9%			
IC	SDD and SC	DD tended	to reduce:				
Н	Duration	on of ventila	ation				
	 Duration of ICU-stay Duration of hospital stay 						
D	Duration of ICU-stay 1 1.09 (0.99-1.21) 1.06 (0.94-1.19)						
	Duration of hospital stay11.13 (1.01-1.25)1.13 (0.96-1.32)			1.13 (0.96-1.32)			

Random effects logistic regression model with adjustment for age, gender, APACHE II score, ventilation, surgical/non-surgical and study center.

Would you use in an intervention if it

- Improves patient outcome (day-28 mortality)?
- Reduces ICU-acquired Gram-negative bacteremia?
- Reduces VAP?
- Reduces intravenous antibiotic use?
- Reduces ICU-acquired bacteremia caused by MDR?
- Reduces acquisition of MDR in the respiratory tract?
- Reduces carriage with ESBL-producing bacteria in the intestinal tract?
- Is cost-effective (costs <€20,000/life year gained)?
- Has it all?

Incidences of ICU-acquired bacteremia.

Clinical Investigations -

The role of intestinal colonization with Gram-negative bacteria as a source for intensive care unit-acquired bacteremia*

Evelien A. N. Oostdijk, MD; Anne Marie G. A. de Smet, MD, PhD; Jozef Kesecioglu, MD, PhD; Marc J. M. Bonten, MD, PhD; on behalf of the Dutch SOD-SDD Trialists Group

Crit Care Med 2011 Vol. 39, No. 5

Table 1. Incidence densities and rate ratios of intensive care unit-acquired Gram-negative bacteria bacteremia during standard care, SOD_{total} , and SDD_{total}

Variable	Standard Care	$\mathrm{SOD}_{\mathrm{total}}$	SDD _{total}
No. of patients	1,945	2,166	2,667
Patient days	26,824	28,575	35,394
No. of gram-negative bacteria bacteremia	121	86	52
Percentage	6.2%	4.0%	1.9%
95% confidence interval	5.13-7.27	3.15-4.79	1.43-2.47
Median onset (interquartile range)	10(11)	13 (15.25)	13 (14)
Incidence density	4.51	3.01	1.43
No. of patients with ≥ 1 rectal sample		259	2476
No. of patients with ≥ 1 episode of rectal colonization		219 (83%)	1134 (46%)
No. of "at-risk" patient days		3,163	34,011
No. of rectal colonization days		2,242 (71%)	8,961 (26%)
No. of no rectal colonization days		921 (29%)	25,049 (74%)

 SOD_{total} , selective digestive tract decontamination cohorts 1 and 2; SDD_{total} , selective digestive tract decontamination cohorts 1 and 2.

Shown are numbers of patients and patient days with Gram-negative bacteria colonization during SOD cohort 2 and SDD_{total}. Data represent median onsets in days after ICU admission.

Eradication of the intestinal Gram-negative flora associated with lower incidence ICU-acquired Gram-negative bacteremia

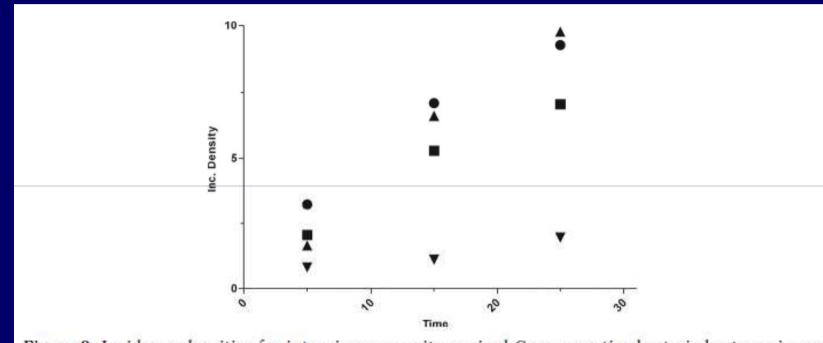


Figure 3. Incidence densities for intensive care unit-acquired Gram-negative bacteria bacteremia per 10 days. •, standard care; •, SOD_{total} ; •, SDD_{total} colonized bacteremia; •, SDD_{total} noncolonized bacteremia. *SOD*, selective oropharyngeal decontamination; *SDD*, selective decontamination of the digestive tract. SOD_{total} is explained in the text. SOD_{total} consists of SOD-C1 and SOD-C2.

Would you use in an intervention if it

- Improves patient outcome (day-28 mortality)?
- Reduces ICU-acquired Gram-negative bacteremia?
- Reduces VAP?
- Reduces intravenous antibiotic use?
- Reduces ICU-acquired bacteremia caused by MDR?
- Reduces acquisition of MDR in the respiratory tract?
- Reduces carriage with ESBL-producing bacteria in the intestinal tract?
- Is cost-effective (costs <€20,000/life year gained)?
- Has it all?

Would you use in an intervention if it

- Improves patient outcome (day-28 mortality)?
- Reduces ICU-acquired Gram-negative bacteremia?
- Reduces VAP?
- Reduces intravenous antibiotic use?
- Reduces ICU-acquired bacteremia caused by MDR?
- Reduces acquisition of MDR in the respiratory tract?
- Reduces carriage with ESBL-producing bacteria in the intestinal tract?
- Is cost-effective (costs <€20,000/life year gained)?
- Has it all?

Systemic antibiotic use (totals in DDD)

	SDD group	SOD group	Standard care
Antibiotics	Total DDD use (Δ SDD vs Control)	Total DDD use (Δ SOD vs Control)	Total DDD use
Penicillins	9,767 (-27.8%)	12,805 (+5.3%)	13,523
Carbapenems	724 (-45.7%)	995 (-25.4%)	1,334
Cefalosporins	8,473 (+86.6%)	3,935 (-13.3%)	4,541
Quinolones	2,637 (-31.4%)	3,291 (-14,4%)	3,846
Clindamycins	473 (-11.6%)	553 (+3.4%)	535
Other antibiotics	7,589 (- 23.4%)	8,720 (-12.0%)	9,909
All Systemic antibiotics	29,663 (-12.0%)	30,299 (-10.1%)	33,688

NENGLJMED 360;1 NEJM.ORG JANUARY 1, 2009

Would you use in an intervention if it

- Improves patient outcome (day-28 mortality)?
- Reduces ICU-acquired Gram-negative bacteremia?
- Reduces VAP?
- Reduces intravenous antibiotic use?
- Reduces ICU-acquired bacteremia caused by MDR?
- Reduces acquisition of MDR in the respiratory tract?
- Reduces carriage with ESBL-producing bacteria in the intestinal tract?
- Is cost-effective (costs <€20,000/life year gained)?
- Has it all?

Selective digestive tract decontamination and selective oropharyngeal decontamination and antibiotic resistance in patients in intensive-care units: an open-label, clustered group-randomised, crossover study

Anne Marie G A de Smet, Jan A J W Kluytmans, Hetty E M Blok, Ellen M Mascini, Robin F J Benus, Alexandra T Bernards, Ed J Kuijper, Maurine A Leverstein-van Hall, Arjan R Jansz, Bartelt M de Jongh, Gerard J van Asselt, Ine H M E Frenay, Steven F T Thijsen, Simon N M Conijn, Jan A Kaan, Jan P Arends, Patrick D J Sturm, Martin C J Bootsma, Marc J M Bonten

www.thelancet.com/infection Published online March 21, 2011

Incidence of MDR bacteremia

	SC n=1989	SOD n=1904	SDD n-=2034
Frequency of obtaining blood cultures (per pt day)	0,11	0,13	0,11
HRMO <u><</u> 2 days in ICU	6	3	3
HRMO <u>></u> 3 days in ICU (%)	19 (1.7)	20 (1.4)	8 (1.0)

SDD vs SC: OR 0,41 (0,18-0,94); SDD vs SOD: OR 0,37 (0,16-0,85)

SC: Rate reduction: 59%; Absolute Risk Reduction 0,6%; NNT=170 SOD: Rate reduction: 63%; Absolute Risk Reduction 0,7%; NNT=145

Would you use in an intervention if it

- Improves patient outcome (day-28 mortality)?
- Reduces ICU-acquired Gram-negative bacteremia?
- Reduces VAP?
- Reduces intravenous antibiotic use?
- Reduces ICU-acquired bacteremia caused by MDR?
- Reduces acquisition of MDR in the respiratory tract?
- Reduces carriage with ESBL-producing bacteria in the intestinal tract?
- Is cost-effective (costs <€20,000/life year gained)?
- Has it all?

	SC	SOD	SDD
Acquired HRMO	128 (14.5)	88 (10.0)	74 (8.9)
Acinetobacter spp Stenothrophomonas maltophilia Pseudomonas aeruginosa Other GNF-GNR Enterobacter spp Escherichia coli Klebsiella spp Citrobacter spp Morganella spp Proteus spp Serratia marcescens Streptococcus pneumoniae	14 8 29 3 18 23 22 4 1 2 3	3 6 9 5 19 9 21 3 0 0 9	7 7 10 20 9 4 9 0 1 2 3
Staphylococcus aureus	0	2 2	2

SDD versus SC: Odds ratio 0,58 (0,43-0,78)

Rate reduction: 38%; Absolute Risk Reduction 5,5%; NNT=18

SOD versus SC: Odds ratio 0,65 (0,49-0,87)

Rate reduction: 32%; Absolute Risk Reduction 4,6%; NNT=22

De Smet et al. LID 2011

Acquired Respiratory Tract Colonization

	SC N=881	SOD N=886	SDD N=828
 Tobramycine resistance: <i>Escherichia coli</i> and Klebsiella spp Other Enterobacteriaceae Acinetobacter spp and <i>S. maltophilia</i> Other GNF-GNR¶ Any Gram-negative rods 	31 (3.5) 25 (2.8) 40 (4.5) 18 (2.0) 104 (11.8)	19 (2.1) 41 (4.6) 45 (5.1) 20 (2.3) 112 (12.6)	9 (1.1) 15 (1.8) 49 (5.9) 49 (5.9) 115 (13.9)
Cefotaxime resistance:			
• Escherichia coli and Klebsiella spp	13 (1.5)	12 (1.4)	2 (0.2)
 Other Enterobacteriaceae 	44 (5.0)	42 (4.7)	18 (2.2)
 With any Enterobacteriaceae 	56 (6.4)	56 (6.3)	20 (2.4)
Colistine resistance:			
Proteus spp and Serratia spp	130 (14.8)	112 (12.6)	55 (6.6)
		De Smet et	al LID 2011

De Smet et al LID 2011

Ecological Effects of Selective Decontamination on Resistant Gram-negative Bacterial Colonization

Evelien A. N. Oostdijk¹, Anne Marie G. A. de Smet², Hetty E. M. Blok¹, Emily S. Thieme Groen², Gerard J. van Asselt³, Robin F. J. Benus⁴, Sandra A. T. Bernards⁵, Ine H. M. E. Frénay⁶, Arjan R. Jansz⁷, Bartelt M. de Jongh⁸, Jan A. Kaan⁹, Maurine A. Leverstein-van Hall¹, Ellen M. Mascini¹⁰, Wouter Pauw¹¹, Patrick D. J. Sturm¹², Steven F. T. Thijsen¹³, Jan A. J. W. Kluytmans^{14,15}, and Marc J. M. Bonten^{1,16}

Am J Respir Crit Care Med Vol 181. pp 452-457, 2010

TABLE 2. PROPORTIONS OF PATIENTS COLONIZED WITH ANTIBIOTIC-RESISTANT GRAM-NEGATIVE BACTERIA DURING MONTHLY POINT PREVALENCE SURVEYS PER PERIOD AND MONTHLY CHANGES DURING THE SPECIFIC PERIODS*

	Average Prev	Average Prevalence per Period [mean (95% Cl)]			Change in Prevalence during Period [ß coefficient (P value)]		
	Pre	Intervention	Post	Pre	Intervention	Post	
Rectal samples							
Ceftazidime	6% (4.7-7.5%)	5% (3.9-6.7%)	15% [†] (12.4–17.0%)	-0.07 (0.038)	-0.05 (NS)	-0.04 (NS)	
Tobramycin	9% [†] (7.7–11.2%)	7% (5.5-8.7%)	13%' (10.4-14.7%)	0.00 (NS)	-0.05 (NS)	-0.04 (NS)	
Ciprofloxacin	12% [†] (9.7–13.5%)	7% (5.1-8.2%)	13%† (10.8-15.2%)	-0.01 (NS)	0.03 (NS)	-0.03 (NS)	
Respiratory samples							
Ceftazidime	10%† (7.6-13.3%)	4% (2.6-4.6%)	10% (7.4-13.0%)	0.00 (NS)	0.09 (0.039)	0.07 (NS)	
Tobramycin	10% [†] (6.9–12.5%)	6% (4.5-6.9%)	12% [†] (8.8–14.6%)	0.17 (NS)	0.04 (NS)	-0.04 (NS)	
Ciprofloxacin	14% [†] (10.4–17.0%)	5% (3.5-5.7%)	12% (9.0-14.9%)	0.05 (NS)	0.02 (NS)	-0.02 (NS)	

Definition of abbreviations: CI = confidence interval; Intervention = intervention period; Pre = preintervention period; Post = postintervention period; NS = not significant. The β coefficient is considered significant if the *P* value is less than 0.05.

* Adjusted for changes between centers.

 † P < 0.05 as compared with the intervention period. Adjusted for changes between centers.

Conclusions: Colistin resistance

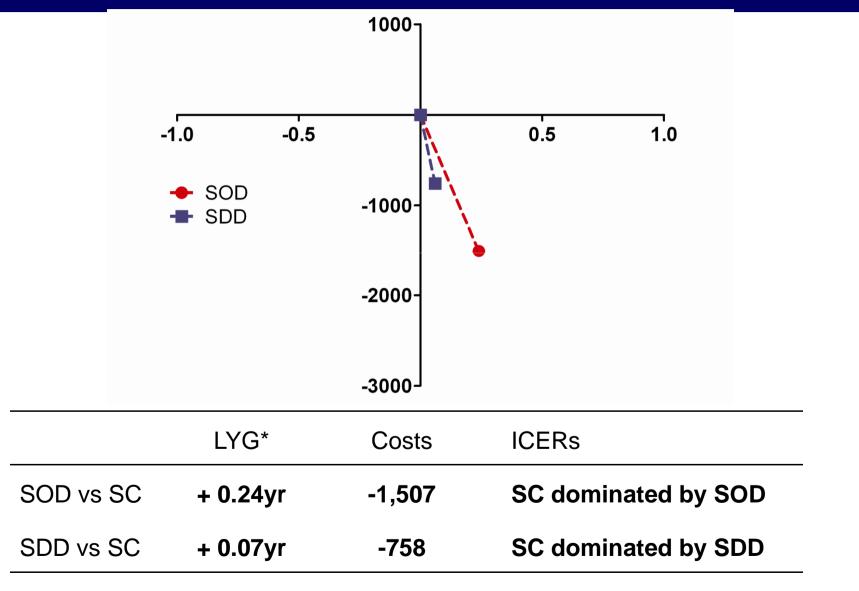
- During continuous topical use of colistin acquisition rates (per 1,000 patient days at risk) were
 - 1.2 -2.4 in rectal swabs during SDD
 - 0.7 -1.1 In respiratory samples during SDD, SOD and SC

Colistin resistance

- Not prevalent in the community
- Not located on plasmid/transposon -> no horizontal gene transfer
- IV-use appears to be a risk factor
 - Leading to de novo resistance
- Cross-transmission of resistant bacteria is possible
- Unknown:
 - Duration of carriage
 - Stability of resistance

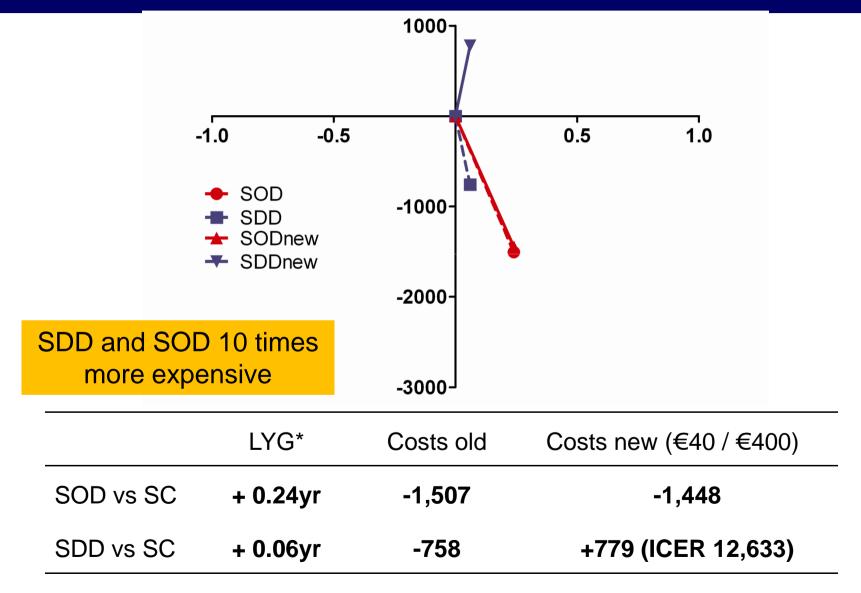
Would you use in an intervention if it

- Improves patient outcome (day-28 mortality)?
- Reduces ICU-acquired Gram-negative bacteremia?
- Reduces VAP?
- Reduces intravenous antibiotic use?
- Reduces ICU-acquired bacteremia caused by MDR?
- Reduces acquisition of MDR in the respiratory tract?
- Reduces carriage with ESBL-producing bacteria in the intestinal tract? SDD does (*JAC 2012*)
- Is cost-effective (costs <€20,000/life year gained)?
- Has it all?


Patients and Methods: costs

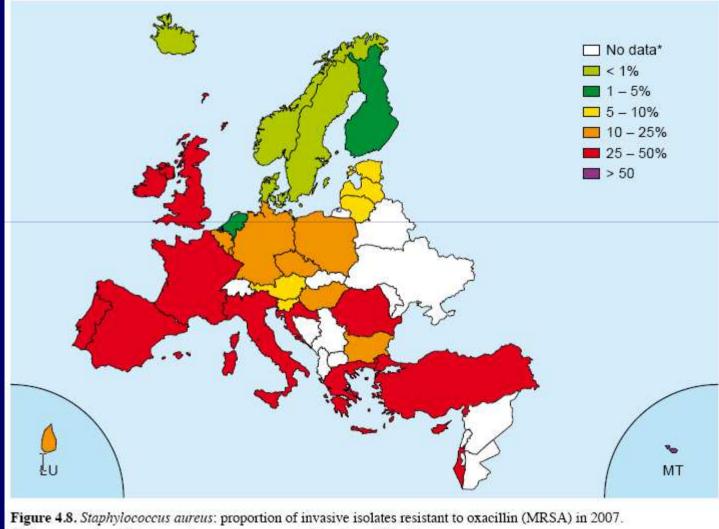
Length of stay	ICU stay (+/- mechanical ventilation)	Hospital stay	
Antibiotics	Study medication SDD or SOD (topical application)	Systemic antibiotics (incl. cefotaxime during SDD) (per DDD)	
Microbiology	Clinical cultures (blood, sputum, BAL, throat) (per culture and extra costs for pos. cult.)		Rectal surveillance (SDD)

Results: mean costs per patient


	SC	SOD	SDD
	n = 1987	n = 1901	n = 2032
Length of stay	€ 41,400	€ 39,831	€ 40,342
Antibiotics	€ 358	€ 318	€ 439
Topical SDD/SOD	€ 0	€3	€ 41
Microbiology	€ 182	€ 281	€ 361
Total	€ 41,941	€ 40,433	€ 41,183

Incremental Cost Effectiveness Ratios (ICER) in a cost effectiveness plane

* Life Years Gained


Incremental Cost Effectiveness Ratios (ICER) in a cost effectiveness plane

* Life Years Gained

Benefit on	SDD	SOD	CHX
Day-28 survival	+	+	?
Gram-negative ICU-acquired bacteremia	++	+	?
VAP	+	+	+
Intraveous antibiotic use	+	+	?
ICU-acquired (MDR) bacteremia	+	-	?
MDR acquisition in respiratory tract	++	+	?
Cost-saving	-	+	?
Cost-effecttive	+	++	?
Does fit to concept of prudent antibiotic use	-	+	++
Score	9	9	3

SDD in your – not greenish - country

* These countries did not report any data or reported less than 10 isolates.

Benefit on	SDD	SOD	CHX
Day-28 survival	?	?	?
Gram-negative ICU-acquired bacteremia	?	?	?
VAP	+	+	?
Intraveous antibiotic use	?	?	?
ICU-acquired MDR bacteremia	?	?	?
MDR acquisition in respiratory tract	?	?	?
Cost-saving	?	?	?
Cost-effecttive	?	?	?
Does fit to concept of prudent antibiotic use	-	+	++
Score	1	2	2

FP7 – Theme 1 HEALTH

<u>R</u>esistance in <u>G</u>ram-<u>N</u>egative <u>O</u>rganisms: <u>S</u>tudying Intervention <u>S</u>trategies

R-GNOSIS

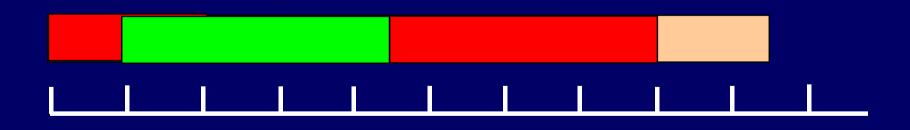
COLLABORATIVE PROJECT - Large Scale Integrating Project

WP6 Decolonization strategies in Intensive Care

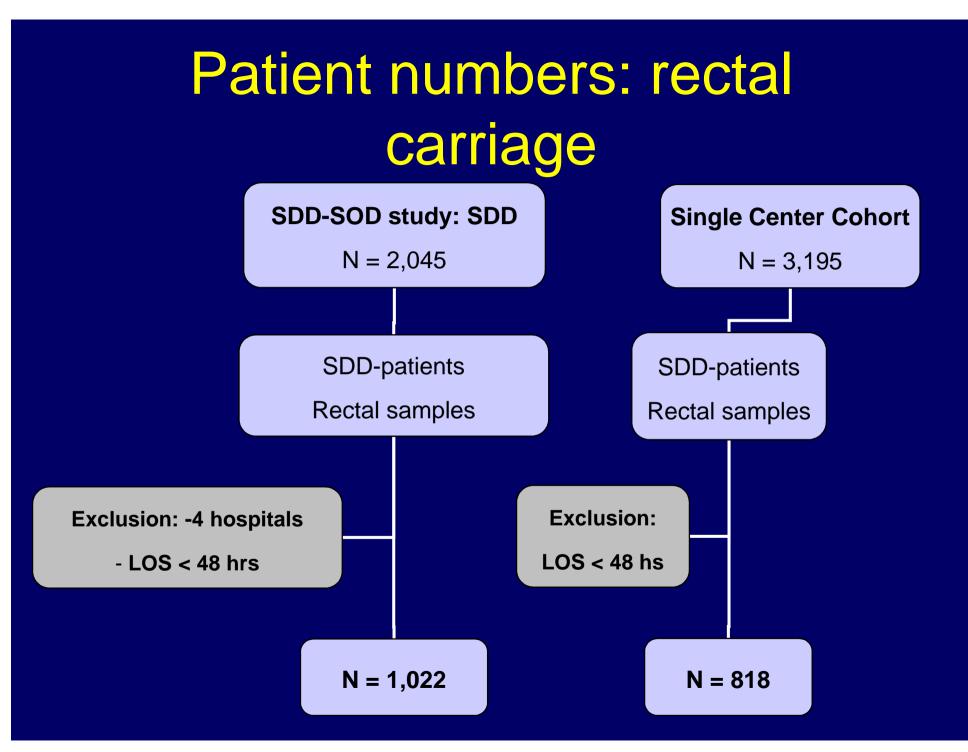
 To determine the effectiveness of 3 decolonization regimens (SDD, SOD and oro-CHX) in ICU patients in reducing ICUacquired MDR-GNB bacteraemia when compared to standard care.

Lead: Christian Brun-Buisson (Universite Paris XII – Val Marne)

Marc Bonten (UMC Utrecht) mbonten@umcutrecht.nl



Rectal colonization was determined for:

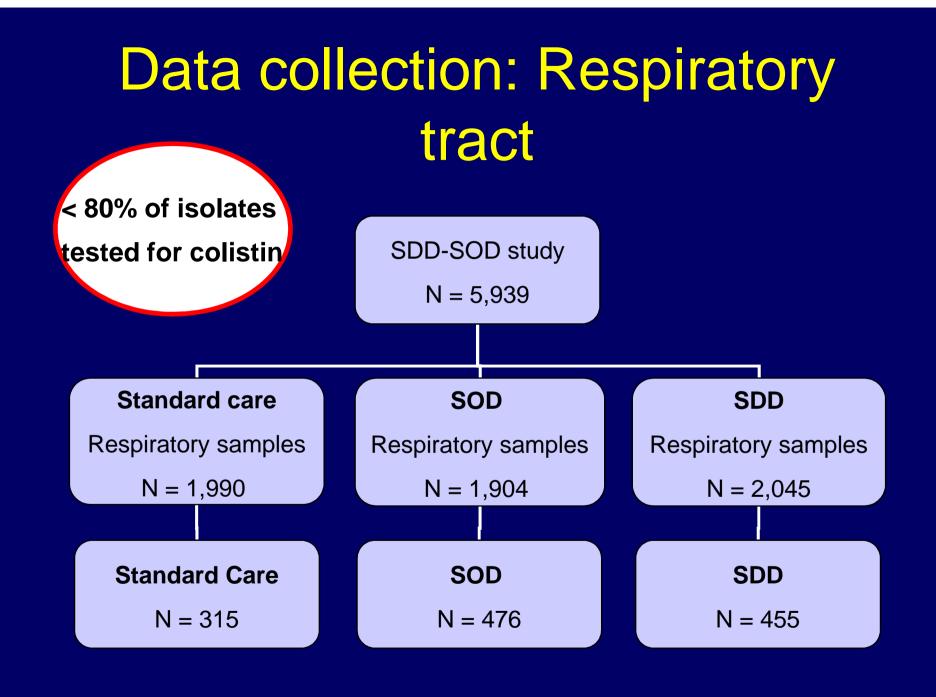

- Enterobacter spp
- Escherichia coli
- Klebsiella spp
- Respiratory tract colonization was determined for:
 - Enterobacter spp
 - Escherichia coli
 - Klebsiella spp
 - Acinetobacter spp
 - Pseudomonas spp

Definitions of colistin resistance

- At admission: within first 3 days
- Acquisition: after 3 days of ICU-stay
 - Conversion of colistin S to colistin R within same species

Time

Results: rectal colonization


	SDD-SOD study	Single Center
	Rectal samples	Rectal samples
N patients	1,022	<mark>818</mark>
N cultures	4,740	4,158
Cultures/patientday	0.28	0.32
Culture positivity GNB	373 (36%)	443 (54%)

Results: rectal colonization

	SDD-SOD study	Single Center Rectal samples	
	Rectal samples		
N patients	1,022	818	
Colistin R/I (95% CI)	55 (5.4%) (4.2% – 7.0%)	16 (2.0%) (1.2% –3.2%)	
On admission	14 (1.4%)	1 (0.1%)	
Acquired	41 (4.0%)	15 (1.8%)	
Acquisition rate	2.4	1.2	
/ 1,000 pat days (95% CI)	(1.5 – 4.2)	(0.7 – 2.0)	

Results: rectal colonization

	SDD-SOD study	Single Center
	Rectal samples	Rectal samples
N patients	1,022	818
Conversion COL S->R	17 (1.7%)	9 (1.1%)
Median Time Till Conversion	5 (2-71 ; IQR 3)	19 (6-50 ; IQR 30)
Conversion Rate / 1,000 patientdays	1.0	0.7

Results: respiratory tract

	Standard Care	SOD	SDD
N patients	315	476	455
N cultures	1,611	2,382	2,473
Cultures/patientday	0.25*	0.32	0.32
Culture positivity GNB	139 (44%)	155 (33%)	140 (31%)

Results: respiratory tract

	Standard Care	SOD	SDD
N patients	<mark>315</mark>	476	455
Colistin R/I	7 (2.2%)	10 (2.1%)	9 (2.0%)
On admission	2 (0.6%)	2 (0.4%)	4 (0.9%)
Acquired	5 (1.6%)	8 (1.7%)	5 (1.1%)
Acquisition rate	0.8	1.1	0.7
/ 1,000 pat days (95% CI)	(0.3 – 1.8)	(0.5 – 2.1)	(0.4 - 2.4)

Results: respiratory tract

	Standard Care	SOD	SDD
N patients	315	476	455
COL S-R	3 (1.0%)	4 (0.8%)	5 (1.1%)
Median TTC	19 (IQR 14-37)	8 (IQR 4-36)	12 (IQR 4-63)
Conversion Rate / 1,000 patientdays	0.5	0.5	0.7
Colonized CR / 1,000 col. pat.days	1.1*#	2.6	3.6